Cyberlearning and Constructionism in Sustainable Life-Cycle Engineering

Name: Bertha Wang
Mentor: Dr. Kyoung-Yun Kim

About Me
Bertha Wang is a third-year undergraduate at Princeton University. She is majoring in mechanical and aerospace engineering, with certificates in robotics and computer science.

Project Introduction
Wayne State University, Penn State University, and Oregon State University are collaborating to develop a web-based sustainable lifecycle engineering design education portal called CoolSLiCE (Constructionism in Learning: Sustainable Life-Cycle Engineering).

CoolSLiCE is a cyber-learning platform that takes a constructionist approach to provide an interactive learning environment and enable engagement in sustainable design and analysis. The participating universities each contributed a different tool to reflect the multi-disciplinary facets of sustainable engineering. The platform consists of three modules to fulfill learning objectives (Figure 1). It is in developing stages, and the team is currently working towards evaluating its usability.

Learning Objectives:
1: Analyze the impacts of product architecture, manufacturing processes, and supply chain decisions on the economic and environmental sustainability of a product; 2: Articulate the impacts of product architecture, manufacturing processes, and supply chain decisions on the economic and environmental sustainability of a product; 3: Construct product design solutions that address technical requirements, in addition to economic and environmental sustainability goals.

State of Knowledge
The current lack of integrated sustainability analysis has motivated the CoolSLiCE team to develop the cyberlearning platform. The team has taken a constructionist approach to provide appropriate scaffolding in a multidisciplinary cyberlearning environment.

Figure 3: CoolSLiCE Learning Theory

Inter-University Multi-Disciplinary Team Project
Goals:
- Evaluate how CoolSLiCE addresses sustainable engineering
- Evaluate how CoolSLiCE facilitates group work.

Student Team: For the pilot test, the graduate student developers are acting as CoolSLiCE users. The team varies in areas of engineering disciplines.

Task: Design and perform sustainable manufacturing analysis of drones for a custom purpose

Data Collection: To record group interactions, the team is using Slack.com to coordinate and record meetings, share ideas, and note decisions.

Approach
The formation of the inter-university multi-disciplinary team project has resulted in a cyclic approach towards evaluation.

Current Needs and Future Direction
It is important to note that the evaluation is an ongoing process.

The project has produced feedback for future direction:
- Need for tutorials or initial instruction to motivate student
- Need to generalize S-PASS Tool to address any product
- Suggestion to integrate 3D online CAD with other tools

Acknowledgements
Recognition goes towards the CoolSLiCE team of Wayne State University (Dr. Carolyn Paenkka, Dr. Kyoung-Yun Kim, Ms. Tanque Hasan Khan, Tasia Reza), Oregon State University (Dr. Karl Haapala, Kamyar Rassou), and Penn State University (Dr. Kathy Jackson, Dr. Gui E.O. Kramer, Kijung Park). This work is supported by the NSF REU program (Award No. 1461031). CoolSLiCE has also been funded by the NSF S-STEM: SCHLR SCI TECH ENG&MATH, IUSE program through grants DUE-1432774 at Oregon State University, DUE-1431481 at Wayne State University, and DUE-1431739 at Pennsylvania State University.

References

Figure 4: CoolSLiCE’s Relationship to Sustainable Manufacturing