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e As demand for sustainable energy increases due to rising carbon

The DWTP algae strain i1s not a good candidate to be grown in

e The DWTP algae strain grew at its fastest rate in autotrophic conditions [0 g G/L] rather than in mixotrophic
conditions [1 g G/L], with the preference of air bubbling or CO2 bubbling varying for each medium.

dioxide levels in the atmosphere, there has been a growing level 1n algae-to-

mixotrophic wastewater; the overbearing amount of nutrients hinders its

biofuel production in wastewater.
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Fig 7: OD Results in MB3N . . . analysis advises industries to consider this method of production as it
e Specific algae strains can yield up to 7 times more energy per acre than corn- | e allows for greater profit while reducing one’s carbon footprint.

based ethanol, which 1s the major source of biofuel today. e When comparing all three mediums together, the

greatest amount of algae growth was measured to be M S ; .
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sunlight

OD Results (Primary WW) Inputs of algae-to-biofuel production are sunlight and CO2, both of which
e Perhaps, the amount of nutrients in the o ] are abundant and sustainable resources. y
wastewater were overbearing, leading to the al- . __ : [ l
gae’s diminished growth. This same reasoning 5 ;; b DR This method of production emits fewer greenhouse gases, reducing
can also contribute to why the algae cells in P et
mixotrophic conditions [1-2 g G/L] had a lower There L P . .
: : g o t t tantially.
Fig. 3: Projection of Algae Cell growth rate than those in autotrophic conditions | T e society’s carbon footprint substantially
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Measure mixotrophic and autotrophic algae growth rates in 3 different mediums

(MB3N, Secondary WW, & Primary WW) to determine maximum production.
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Algae strain (unidentified) obtained from Detroit Wastewater Treatment Plant .
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